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ABSTRACT 

Often the process and effort in building interoperable 
Command and Control (C2) systems and simulations  can 
be arduous.  Invariably the difficulty is in understanding 
what is intended.  This paper introduces the notion of com-
posable bridges as a means to help transition abstract 
ideas or concepts into concrete implementations.   
 We examine the key elements to achieve composabil-
ity, which include the direction provided by a process,  the 
importance of a conceptual model, the use of patterns to 
help characterize reusable aspects of a design, the impor-
tance of having good discovery metadata and well-defined 
interfaces that can be implemented, the use of components, 
and the practical use of libraries and tools.  We suggest 
that, of all these elements, a properly documented concep-
tual model provides the basis for formulating a compos-
able bridge, and that things like patterns, discovery meta-
data, and interfaces play a key role.  We take a look at a 
specific standard known as the Base Object Model (BOM) 
and examine how it provides a means to define a compos-
able bridge.  We explore how BOMs, in this capacity, can 
be aggregated and used (and reused) to support the crea-
tion of concrete implementations.  We also explore how 
such composability helps to achieve various levels of inter-
operability for C2 systems and Simulation applications. 

1 INTRODUCTION 

Whether we are architects, develop-
ers, analysts, educators, or managers, 
composability is a common shared 
desire.  There is a consistent  need to 
assemble capabilities and develop 
meaningful functionality from the 
knowledge, tools, standards and 
components that are available to us.   

 Often this desire to create 
and compose is a trait we have had 
since we were young (see Figure 1). 
And for many, it has never left us.  
We have simply transferred this early desire to the context 
of our work as we pursue the creation of innovative things 

such as developing and integrating models, software appli-
cations, simulations, and C2 systems.   
 Composability is defined by the DoD M&S Master 
Plan as “the ability to rapidly select and assemble compo-
nents to construct meaningful systems to satisfy specific 
user requirements.”    
 There are three aspects of composability that this defi-
nition identifies:  

(1) The selection and use of components  
(2) The construction of meaningful systems, and  
(3) The satisfaction of specific user requirements 

We will briefly explore each of these. 

1.1 The Selection and Use of Components 

This first aspect of composability can be compared to the 
Lego® mindset as illustrated in Figure 2 in which blocks 
selected from the same source (i.e., Lego® bins) can be 
used and reused to construct various creations.  The Lego® 
bricks serve as components. 
     
 

 
 

Figure 2. Composability Represented  
Using Lego® Bricks 

 
Although the construction of a boat or car using Lego® 
bricks may be more trivial than perhaps the composability 
of C2 systems and simulations, what is congruous is sim-
ply the idea and desire to select and use components in 
building up C2 systems and simulations.    

 

1.2 The Construction of Meaningful Applications 

 Composability begins as an “idea” in the conceptual 
space.  For a child, such ideas start as a glimmer in the 
mind’s eye; a mental picture of something that they could 
potentially create from the bricks that lie in front of them.   

 
Figure 1. An  
Illustration of 

Composability 
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 The bricks are only an enabler, the fuel, for bringing to 
life what starts out in the imagination.   However, during 
the process of building they may continue to formulate 
their concept mentally, until, at last, a meaningful physical 
creation is complete.  This is where the chasm is crossed 
from the original concept to the first implementation; when 
an idea has finally become something real and tangible.  
The question that is asked though is, “Does it satisfy what 
was intended?”  

1.3 The Satisfaction of Specific User Requirements 

Once a Lego® composition is complete, a child will typi-
cally revel in their creation.  Eyeing it as if it were a prize; 
satisfied in what they have built BUT only if it meets what 
they desired. In the workplace these desires are better 
known as user requirements.  And they may start as objec-
tives and ideas formulated initially on paper as require-
ments, then spun and expanded as concept diagrams drawn 
up on paper, within a tool, or on a white board.  And if the 
passion and drive are there, they are churned and worked 
until a satisfying product is conceived, whether it be a 
software application, a PowerPoint, a proposal, or new sys-
tem or simulation.  But what we create truly isn’t satisfying 
unless it has met our requirements. 
 Thus, there is a point for any successful project where 
what has been implemented is compared to what was con-
ceptualized.   Consider the questions that are pondered at 
the conclusion of a project, especially large projects: 

 How did it go?   
 Did we meet all our requirements? 
 Was the sponsor happy with the results? 

 
It’s intriguing isn’t it that we often wait to ask these 

questions until after a project is completed?  This may be a 
telltale sign that that those involved in the project are per-
haps not communicating early and often enough regarding 
what is intended  (i.e., the concepts) and they are not sub-
sequently correlating those intentions with what they are 
building or using (e.g., components) in their effort to real-
ize an implementation.  What is needed, therefore, is a 
means to assist in bridging well defined concepts with 
what is ultimately being implemented.  Considering that 
the process and effort in building interoperable C2 systems 
and simulations can be arduous,  this need for bridging the 
conceptual plane to the implementation plane through 
composability is significant. 

2 FORMULATING COMPOSABLE BRIDGES 

Typically, a bridge is defined as “a structure spanning and 
providing passage over a gap or barrier.”  In music it is de-
fined as “a transitional passage connecting two subjects or 
movements.”[1]  And in the context of development, a 
bridge should be defined as “a means to span and provide a 

way to connect an idea (i.e., initial concept) to something 
implementable.”   This idea is conveyed in Figure 3. 
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Figure 3. The Development Bridge 
 

 For projects that fail, it’s easy to determine that a 
bridge encouraging communication among stakeholders 
was never properly formulated.  It fell short.  But for pro-
jects that succeed, a bridge is formed, which makes the 
journey however long or short, possible to bare. In fact, 
what we all want for any project is to be able to bridge 
quickly and easily from initial concept to implementation.  
The question is how can that best be done? 
 What if such bridges could be reflected structurally as 
means to convey a concept that can be mapped to one or 
more potential implementations?   Like a blueprint to a 
house or building?  What if the common desired behaviors, 
understood first conceptually, could be individually de-
fined, described and cataloged providing a means to assist 
in communicating an idea that can be bridged to something 
implementable?   And what if such bridges could be reused 
and aggregated to formulate the scaffolding needed for lar-
ger project specific bridges? Wouldn’t such use of bridges 
increase our likelihood for effective communication among 
stakeholders and for achieving successful creation of 
meaningful applications? 

2.1 Why the Conceptual Model is Key 
 
We postulate that the conceptual model provides the basis 
for a composable bridge. The conceptual model is key be-
cause it is intended to describe “what the [system or simu-
lation] will represent, the assumptions limiting those repre-
sentations, and other capabilities needed to satisfy the 
user’s requirements.”[5] 
 Think about what is intended to be offered by a con-
ceptual model.   It is a means to understand what is to be 
represented.   It’s not revealing a finished product – but it’s 
a way to get a quick look at what that product might be 
like; much like a blueprint or house plan is to a prospective 
buyer.  Conceptual models offer a mechanism for commu-
nication!   
 Because a conceptual model is implementation neu-
tral, C2 systems and simulations can share the same (or 
very similar) conceptual models. Capabilities can be de-
scribed independent of whether those capabilities are real-
ized as system component or simulation component.   
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 We also recognize that C2 systems including applica-
tions and web services may embed simulations to support 
its objectives.  Such C2 system/applications/web services 
will need to leverage simulations and "compose" services 
for specific C2/Simulation needs such as training.   Thus, 
the need for composable bridges supported through well-
defined conceptual models can be of great assistance here 
too. 

2.2 Fitting the Conceptual Model to your Process 
 
There are many forms that conceptual models take today 
across the various disciplines where they are needed.  They 
maybe captured in white papers, software prototypes, story 
boards, or other related artifacts. This said, up until now, 
there has been little support to realize these prototypes in 
respect to C2 systems and simulation systems and to ex-
periment and exercise with them at a conceptual / pre-
decisional level.  There are two potential reasons for this:   

1. The tools and standards (including architectures) 
have either been non-existent or non-intuitive too 
encourage and support conceptual modeling for 
the C2 system and simulation domain, or  

2. The time required to perform conceptual model-
ing is simply not allotted by stakeholders within 
the C2 system and simulation domain.  

 
Both these reasons have merit, but perhaps the most pre-
cious resource available to any of is time.   And there is a 
perception that, because of schedule, because of deadlines, 
because of time, it’s often best to move quickly from re-
quirements to development spending little time performing 
the analysis.   For example,  If you examine the typical de-
velopment effort, there are a few interesting tendencies that 
we see take place. 

(1) First Action – if it’s a brand new project or even 
one were something is being modified – a con-
certed effort is often made to identify the re-
quirements.  It might start by asking, “What do we 
want the system(s) or simulation(s) to do?”  
Whether those requirements are identified as a 
bullet list or within a formal specification, the 
end-result would be some level of understanding 
of the requirements. 

(2) Second Action – once funding is in place and the 
requirements identified –a team of engineers and 
developers typically jump in and begin to design, 
code and configure system(s) and simulation(s) to 
meet the stated requirements – or at least to an 
engineers understanding of the requirements. 

(3) Third Action – Following the development and in-
tegration effort a series of tests might be pre-
formed to see how the system(s) or simulation(s) 
measure against a set of test criteria – and invaria-
bly that test criteria is based on the requirements. 

We could spend a great amount of time drilling into any of 
these three action tendencies, but there’s one activity that is 
routinely missed following the First Action and prior to the 
Second Action.   An activity that, if missed as it often is, 
can significantly impair the success of the other actions 
we’ve identified. 
 The activity that is often missed is the development of 
conceptual models.  And yet, well defined processes, like 
the IEEE Federation Development and Execution Process 
(FEDEP) process partially illustrated in Figure 4, identify 
the importance of this activity. In Figure 4 it is identified as 
“conceptual analysis”.  Conceptual analysis results in the 
production of conceptual models.  These conceptual mod-
els provide a supporting plan to fulfill the requirements 
that were identified in Step 1, and provide a means to guide 
the rest of the process effort – like a blueprint.  
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Figure 4. Common Development Process 
 
 Interestingly enough this step is the most common de-
velopment issue for a development team [2]. Specifically, 
most development and engineering teams completely miss 
Step 2 of the process identified in Figure 4.  The impact of 
missing Step 2 is that it often results in miscommunication 
and misunderstanding among stakeholders, limiting the 
success of a project.    

It’s like a house being built solely based on the list of 
features a home owner wants.    The detailed house plan, 
aka the blueprint, is forgone.   Imagine the difficulty a 
team of carpenters might have in trying to frame and build 
the house.   Imagine the future home owner feeling as if 
he’s in the dark until the structure is revealed to him.  
Imagine the dialog that might take place between the home 
owner and the contractor’s team when the home under 
construction does not match exactly what the home owner 
wanted.  And what does the home owner have as a record 
to prove to anyone that the contractor is not implementing 
what he originally desired.    That is why a blueprint is key. 
 Like the development of a blueprint, Step 2’s goal is to 
produce conceptual models. Conceptual models identify 
what needs to be represented, and how things are supposed 
to behave.   And like a blueprint, it's this artifact that helps 
bridge the communication gap between multiple stake-
holders, providing a common framework for collaboration 
and understanding.   Such understanding leads to proper 
composability, and therefore better software, systems and 
simulations.   
 Additionally, conceptual models should be leveraged 
throughout development.  Like a blueprint, we need to 
keep coming back to it, because it ties what we intend to 



 

 4

build (i.e., our objectives), with what we are designing and 
developing.  It creates a bridge. 

Consider this, if the conceptual model is not carried 
forward – applied, understood, visualized, and used at the 
various stages of development – then how will it be known 
that the objectives have been met and satisfied? 

2.3 Discovering Patterns 
 

A question to ask is, “what should we look for when trying 
to identify and define conceptual models?”  This is where 
patterns come into play.  Patterns offer a solution that can 
be reused for supporting a common problem or need.  They 
can be a key aspect of our conceptual model.  Martin Fow-
ler, a noted Computer Scientist, describes patterns as “an 
idea that has been useful in one practical context and will 
probably be useful in others.” 
 Christopher Alexander, a noted author and professor,  
first pioneered the concept of patterns years ago when he 
focused on aspects for improving upon the way building 
projects are designed and engineered. In his landmark book 
titled “The Timeless Way of Building” he describes the 
concept as follows: 
 

“Each pattern describes a problem which occurs 
over and over again in our environment, and 
then describes the core of the solution to that 
problem, in such a way that you can use this so-
lution a million times over, without ever doing it 
the same way twice.” 

 
 His work is a reflection of what some of the quality 
architects do; they look for patterns when designing new 
projects.  Specifically they examine the requirements that 
have been identified and then draw from a familiar set of 
patterns that they’re experienced with and propose a con-
cept that satisfies the objectives.  Consider that a blueprint 
to a future house reflects many common patterns and yet, 
as an aggregate, it is a very unique design. 
 The software engineering realm has also begun to em-
brace Alexander’s pattern concept.  Software engineering 
patterns are being applied to support analysis, design and 
aid in refactoring software.  Likewise, we have the same 
opportunity for applying patterns within the C2 systems 
and simulations arena.  By focusing on reusable patterns, 
we can achieve a higher return on investment allowing sys-
tems and simulations to be more easily developed, inte-
grated and used.   
 There are two fundamental types of patterns that can 
be applied: structural patterns, and behavioral patterns.   

 A structural pattern is something that reflects a 
common object or combined set of elements re-
vealed within an environment. We might identify 
a structural pattern as an abstract entity like an 
aircraft, ground vehicle, radar or environmental 
feature such as a bridge and with each one, iden-

tify common attributes among these abstract enti-
ties.    

 A behavioral pattern, on the other hand, is some-
thing, that reflects the anticipated actions and var-
iations that may occur, or, perhaps common 
events or various states of an entity, which can be 
recognized and reproduced.   Some common be-
havioral patterns that are employed within mili-
tary scenarios are depicted in Figures 5 and 6. 

 

Pattern of InterplayPattern of Interplay

pattern actionspattern actions

 
Figure 5. Weapon’s Effect 

 
 Typically patterns are discovered rather than invented.  
In this example, we unveil a common pattern that has been 
reused with great frequency in the simulation community. 
Two entities are depicted.  One that fires at another.   Of 
interest is the pattern associated to this Weapon’s Effect 
behavior.   When the firing entity propels an ordnance on 
the target, two reciprocal actions will typically occur.  The 
Firing Entity, within a simulation, will then update the po-
sition of the projectile and then indicate when the munition 
has detonated.  And then, upon detonation, the target is 
then responsible for sharing its damage state so that the fir-
ing entity is aware of the target’s condition.   This particu-
lar pattern illustrated in Figure 5 is also decorated with the 
various states associated to each type.  It can be seen how 
an action can transition a state change upon each entity.   
This aspect of States of an entity, which is known as a 
State Machine, is also a key aspect of an executable model. 
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Figure 6. Jamming / Detection Patterns 
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 In the example shown in Figure 6, two patterns are re-
vealed.  We could conceivably use the “Detection” pattern 
for other purposes besides just “Jamming” such as “Vec-
toring Interceptors.”  What we learned from this example is 
that the best way to discover a pattern is to perform some 
simple analysis on the problem space and work towards 
identifying a set of conceptual models. Otherwise, rather 
than two patterns being revealed, we would have walked 
away with a single pattern which was fairly bulky, special-
ized, with limited reuse.  

2.4 Identifying Interfaces 
 
In achieving composability, it is not enough to discover 
and document patterns.  Step 3 of the FEDEP process , De-
sign, is an important facet to the development effort.   A 
big part of design is to focus on the “interface” of what will 
be provided and what should be supported by an imple-
mentation whether that resulting implementation be a piece 
of hardware, software, or a service.   
 Within the software engineering field, and supported 
within the C2 system and simulation arena, an interface is 
often described in terms of class structures that collectively 
define the inherent capabilities of an application, compo-
nent, or service. 
 Bjarnes Stroustrup, who was responsible for the crea-
tion of the C++ language, shares the following insight re-
garding interfaces: 
 

“…it is essential for the software industry's health 
that key interfaces be well-specified and publicly 
available.”   - Bjarne Stroustrup 

 
 Interfaces provide a contract of what is available and 
accessible, and provides a framework to resulting imple-
mentations (i.e., software components, simulations, C2 
systems) that support what’s described by the metadata and 
defined by the interface.   

2.5 Applying Components 

Once a desired interface is known, the logical progression 
is to look for available C2 system and simulation compo-
nents that support the conceptual model.  If candidate 
components are not found, then the framework for devel-
oping a new component is already at hand.   
 The DoD M&S composability definition, described 
previously, referred to components.  Components in the C2 
system and simulation world, of course, are functionally 
different than a Lego® brick, but the goal is the same.  
Consider the definition for an M&S component.   
 

 “Reusable building blocks which have a known 
set of inputs and provide expected output behav-
ior, but the implementation details may be hid-

den.  Such components are useful for construct-
ing simulations and/or providing functionality 
for simulation systems.” – COI M&S Metadata 
Focus Group 

 
 The unique thing with a Lego® brick is that it is clear 
how to snap it into other bricks.  The inputs and expected 
outputs are known. We don’t really care about the specific 
implementation aspects of the brick itself; whether it’s 
plastic, hollow, or solid.  But we do care about function 
and form of each brick.  Therefore we look for a brick that 
satisfies a part of our pattern, and can adhere to our inter-
faces.  For example we look for one that has the number of 
nubs that we desire to complete some portion of what we 
intend to create.  When the brick we desire is found, there 
should be enough information inherent in the brick for us 
to know how it connects with other bricks.    

We recognize that Lego® bricks are a fairly simplified 
example of composability.  In other words, it is easy to 
pick up a brick and know how it can be used.  Therefore, 
we dare not trivialize the effort associated to C2 system 
and simulation composability as being as simple as Lego® 
construction.   C2 system and simulation components don’t 
reflect that intuitiveness that Lego® bricks inherently have. 
But what Lego® bricks and C2 system and simulation 
components do share in common is that the inputs and out-
put of a component should be known; that is its interface 
should be exposed. This allows us to understand the build-
ing block functionality a component provides in potentially 
fulfilling a concept or objective. In this way a component 
provides a means to satisfy a composable bridge.   

2.6 Leveraging Metadata 
 
Another key concept to help optimize composability and 
reuse is to ensure the discovery of useful components.    If 
the components we are thumbing through aren’t described 
in a manner the reveals their purpose then there is reason to 
be concerned.  Completing the bridge from concept to im-
plementation will be an arduous task. 
 This is where metadata comes into play.  Metadata is 
data that describes other data.  It labels and describe what 
something is.  Metadata is formally defined as follows: 
 

Metadata is “structured, encoded data that de-
scribe characteristics of information-bearing 
entities to aid in the identification, discovery, 
assessment, and management of the described 
entities [2].” 

 
In order to leverage a toolbox of components that we can 
compose, it is necessary to use metadata to catalog (i.e. 
properly label) the conceptual model (patterns) and inter-
faces that reflect these available components.  
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3 PUTTING IT ALL TOGETHER 
 
Figure 7 provides a graphical summarization of the key 
concepts we have identified. 
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Figure 7. Summary of Key Concepts 

 
 To understand this graphic, consider the following nar-
rative.  In most simulation environments today, software 
produced from our process is supported by tools and is of-
ten maintained in libraries.  Users of such tools build soft-
ware assets and access and manage software assets via li-
braries.  These tools also help us leverage the various 
software assets to compose new applications / capabilities.  
 What is often lacking is the metadata and conceptual 
models, which provide a thumbnail sketch to catalog and 
describe the anticipated behavior which is behind such 
software, system  or simulation assets.  Interfaces are also 
needed to properly reuse and integrate such software, sys-
tem and simulation assets (i.e., components).  The ability 
to map between conceptual models and the various inter-
faces provides a means to carry forward our conceptual 
model in software thereby increasing the likelihood of it 
being reused to support composability.  

 This thumbnail of capability, composed of the 
combination of metadata, patterns, interfaces, and their 
mappings helps to fulfill the core objective we discussed 
earlier of defining and using composable bridges.  Bridges 
that produce a blueprint that satisfies the identified re-
quirements prior to implementation, and satisfies a plan 
needed for implementation. The question now is simply the 
following: 
 

What common structure allows us to represent 
composable bridges for supporting C2 system and 
simulation interoperability? 

 
 Figure 7 identified a few key characteristics that we 
need, which can help answer this question, they include the 
following: 

 discovery metadata,  
 patterns,  
 mappings of entity and events used for a pattern to  

 interfaces that describe the specific class struc-
tures of what will be modeled, and shared. 

But collectively what does this all entail?  
 Well, Christopher Alexander, who fathered the con-
cept of patterns even before software, system and simula-
tions were even an item of interest, expressed the following 
ideas pertaining to desired characteristics.  He shares, and 
we paraphrase, that a pattern should support the following 
characteristics:  

 Identify and name the common problems in a 
field of interest.  

 Describe the key characteristics of effective solu-
tions for meeting some stated goal. 

 Help the designer move from problem to problem 
in a logical way. 

 Allow for many different paths through the design 
process. 

 
 These characteristics need to be considered when iden-
tifying a common structure to represent well understood 
and reusable assets; assets which are intended to be used as 
means to formulate reusable and composable bridges, 
which expedite the development process. 

4 CHOOSING A COMMON STRUCTURE –  
THE BOM 

 
One standard that matches well with Alexander’s desired 
characteristics of a pattern is the Base Object Model 
(BOM) standard.  The BOM is a recent Simulation Inter-
operability Standards Organization (SISO) Standard devel-
oped in the open community for the purpose of supporting 
composable and interoperable object modeling.  It is de-
fined as “a piece part 
of a conceptual model, 
simulation object 
model, or federation 
object model, which 
can be used as a build-
ing block in the devel-
opment and/or exten-
sion of a simulation or 
federation.”[3]   
 The idea behind 
BOMs can be traced 
back to the mid 90s 
when the HLA inter-
operability standard 
was first being culti-
vated.   It was then that 
this notion of a piece 
part concept was con-
sidered which could 
serve as building 
blocks in respect to the 
development process 
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and the creation of interoperable simulation models and 
system components.[4] 
 The conceptual model aspect is one of the discrimina-
tors of the BOM; one of the things that sets itself apart.  
Prior to the BOM standard, the M&S community did not 
have a formal and easy way to describe and share concep-
tual model elements, and did not have an easy way to carry 
that conceptual model forward through the development 
process.   
 Figure 8 peers under the hood of what the BOM stan-
dard provides.  The subsections that follow dive further 
into the BOM structure elements.  

4.1 Model Identification 
 
The first and foremost piece identified in Figure 8 is the 
Model Identification, which represents the essential Dis-
covery Metadata.  Metadata is important so that BOMs can 
be described, discovered, and properly reused.   Consider 
items on the shelf of a grocery story.  If a label wasn’t on 
the cans of food, and boxes of cereal that described the 
contents, then that food resource would likely not be 
bought. 
 The important thing to share about BOM metadata that 
it offers not only a way to tag and “label” resources with 
vital data such as Points of Contact, Description, and Ap-
plication Domain, but it also provides a way to collect and 
share feedback usage through a Use History element.  Con-
sider how one views potential books and products of inter-
est on Amazon.com.    A prospective buyer is offered the 
ability to read about the experiences of other readers per-
taining to the book or product.  That facet of metadata is 
also offered through the model identification metadata 
piece provided by the BOM.  It should be noted that this 
metadata is based on other standards, such as the DDMS, 
Dublin Core, VV&A Recommended Practice guide (RPG), 
and HLA, resulting in a well structured and clean means to 
catalog BOMs. 

4.2 Conceptual Model Definition 
 
The BOM also offers a formal way to capture and share the 
Conceptual Model.  As stated earlier, a conceptual model 
provides a description of “what is to represented, the as-
sumptions limiting those representations, and other capa-
bilities needed to satisfy the user’s requirements.”[5]   In 
regards to the conceptual model what can be reflected is 
the Pattern of Interplay, the States of an entity, the entity 
types and event types.   
 This idea of pattern discovery is very relevant.  A Pat-
tern is “an idea that has been useful in one practical context 
and will probably be useful in others.” [Martin Fowler].  
The Weapon’s Effect pattern shown in Figure 5 is an ex-
ample of something is done with some frequency in com-
bat simulations; it is a pattern.     This, again, is the differ-

entiator from other object modeling frameworks.  And this 
aspect is important, because if intent can be understood as 
well as the anticipated behavior, then it is easier to know 
how to reuse something.  The conceptual model forms the 
basis of defining a reusable bridge component. 

4.3 Object Model Interface 
 
There is also the aspect of model mapping, which will be 
touched on in a moment. But first it’s important to examine 
the Object Model Interface.   In Figure 8, the first thing 
that may be seen in regards to the Object Model Interface 
is an HLA label tethered to Object Classes, Interaction 
Classes and Data Types.   Rightly or wrongly there is often 
a negative or positive reaction to the HLA label.  But it’s 
important to not be fooled by the HLA label.  BOMs are 
not restricted to HLA.  There is a perfectly good explana-
tion of why this is here.     
 It’s important to first explain what aspects are not 
HLA about the Object Model Interface of the BOM.  No-
tice what is not identified are HLA Dimensions, HLA 
Time, HLA Tags, HLA Synchronizations, HLA Transpor-
tations, HLA Switches – they are not in there because they 
were not seen as essential to document a BASE object 
model.    
 All that is really needed at the object modeling level is 
a way to describe data structures – specifically data types, 
object classes and the types of interactions that stake-
holders need represented.   HLA simply provided the most 
accepted and understood class structure mechanism for de-
scribing data types, object classes and interaction classes 
and that’s why it is reflected by the BOM.   The develop-
ment group behind this standard didn’t want to re-invent 
something that was already sufficient for M&S developers. 

4.4 Model Mapping 
 
It is important go back to the Model Mapping aspect.   This 
is one area where some of the magic happens.   The focus 
here is that the ABSTRACT things described in a Concep-
tual Model (entities and events) can be mapped to the ac-
tual types of things to be modeled and represented by a 
system implementation (i.e. , a C2 system or simulation 
component).  The capabilities of these components are de-
scribed in the Object Model Definition.   Thus, if a firing 
entity is identified at the conceptual level (in the concep-
tual model), a Model Mapping indicates what object 
classes (or interaction classes) will fulfill the entities and 
events associated to it.   
 Incidentally it needs to be clearly understood that a 
BOM does not require within itself both Conceptual Model 
Definitions and Object Model Interfaces.  Object Model 
interfaces can be described within other BOMs.   Yes, 
mapping can be made across one or more BOMs, FOMs or 
other architectures models (such as TENA) defining 
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classes.   This loose coupling capability is vary important 
for bringing to bare composable bridges for it allows rela-
tionships to be defined that can be easily replaced.  

5 BOM USE CASE EXAMPLES 

To date BOMs have been formulated and used to doc-
ument and communicate the conceptual space for the Ar-
my, Navy, Air Force, Missile Defense Agency, and general 
simulation community. For example, JHU/APL used 
BOMs to represent a synergistic conceptual model of the 
Airborne Electronic Attack (AEA) communications archi-
tecture for the Air Force.   Such BOMs were developed 
from the collection of DoDAF views that were originally 
formulated by the JHU/APL architecture team.  The BOMs 
have helped to solidify mission objectives and capabilities.  
Additionally, a mapping of the AEA conceptual space pro-
vided by such BOMs is being made using to the software 
constructs representing JHU/APL’s simulation environ-
ment.  This allows for effective communication and trace-
ability in the composition of AEA models. 

BOMs have also recently been used by the surface 
Navy to rapidly prototype and explore potential Mid-
Range Ballistic Attack Munitions (MR-BAM) concepts.   
These BOMs provided the framework for a resulting proto-
type C2 system component or simulation was allowing it to 
be developed and demonstrated within a very short period 
of time.    

A set of BOMs, known as the Real-time Platform Ref-
erence (RPR) BOMs, have been also been developed for 
the general simulation community.  These BOMs define 
building block components of what had been historically a 
monolithic model set called the Real-time Platform Refer-
ence (RPR) FOM.   By breaking the RPR FOM into a set 
of manageable RPR BOMs, it is now much easier to cus-
tomize and extend specific capability in respect to both the 
simulations and the FOMs that such simulations use with 
requiring significant rework and testing.   This facet is ex-
plored further in Section 6.3.   

6 THE PURSUIT OF INTEROPERABILITY  

 According to the DoD M&S Master Plan, composabil-
ity is necessary to enable effective integration, interopera-
bility and reuse.  We have already talked about integration 
provided through mapping and reuse supported through 
metadata, but it’s time to complete the thought and discuss 
interoperability especially as it relates to C2 systems and 
simulations.  Figure 9, illustrates two aspects of compos-
ability:  model composability and system composability.   
Thus far we have focused our attention on model compos-
ability, which involves taking an idea from the conceptual 
space and reaching a successful implementation.  How-
ever, within a world in which C2 systems and simulations 
must interoperate, there is another facet of composability 

identified as system composability which correlates with 
the idea of Interoperability. 
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Figure 9. The BOM Structure 
 
It’s simply not enough to claim victory once the implemen-
tation is complete, we must also explore how such an im-
plementation can integrate with other implementations.  

6.1 Levels of  Interoperability 

 According to Tolk, there are six levels of interopera-
bility [6] that need to be explored and pursued to achieve 
the System Composability capability desired.  These levels 
of interoperability are identified in Figure 10.  
 

 
It’s important to understand what each of these levels of 
interoperability entail: 
 

 Level 1 - Technical Interoperability requires an 
agreed upon communication technology infrastructure 
and protocols such as UDP or TCP/IP to support the 
handshaking among networked systems.   

 
 

Figure 10. Tolk’s Levels of Conceptual  
Interoperability Model (LCIM) 
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 Level 2 - Syntactic Interoperability is achieved us-
ing technology such as XML, which offers a means to 
define and use a common data structure among the 
systems established in a network.  

 Level 3 - Semantic Interoperability is achieved 
when a common reference model (i.e., definition set) 
is used to perpetuate the understanding of the level 2 
data being shared.   

 Level 4 - Pragmatic Interoperability is achieved 
when the systems, simulations or applications in-
volved in the exchange of data are aware of the spe-
cific methods and/or procedures that a calling system 
is requesting. 

 Level 5 – Dynamic Interoperability is achieved 
when systems are able to come “on-line” and begin to 
exchange and reflect data with other systems.   Such 
systems are “able to comprehend the state changes that 
occur in the assumptions and constraints that each is 
making over time, and they are able to take advantage 
of those changes.”[7] 

 Level 6 – Conceptual Interoperability is achieved 
when the anticipated capability that is to be provided 
by the models and simulations to be used are fully un-
derstood and agreed upon by all the stakeholders.  At 
this level of interoperability there is no ambiguity in 
what is expected to be shared.    
 
We could spend significant time further discussing 

each of these levels of interoperability, and the standards 
the are available to support each level, but the ability to 
achieve Level 6 Conceptual Interoperability is what en-
sures the likelihood of success at any of the other lower le-
vels of interoperability.  According to Davis what is re-
quired for Level 6 interoperability is a “fully specified, but 
implementation independent model.”[8]  And this is where 
the recent BOM standard can be applied.   

6.2 The Role of Conceptual Models and BOMs 

 BOMs can be used to represent “piece parts of a con-
ceptual model that can be used as a building block in the 
development and/or extension of a simulation or federa-
tion.”[9] It provides a candidate standard that can help 
achieve the interoperability desired from Level 6 to Level 
2 by helping focus on:  

 what needs to be shared conceptually within an 
M&S environment,  

 how the intended models are to perform pragmati-
cally,  

 how qualifying interfaces, which map with the 
conceptual space, are semantically defined, and  

 how such models are syntactically structured (i.e., 
it provides a template). 

 That said, it should be noted that BOMs are not in-
tended to be a replacement of interoperability exchange 
standards like DIS, HLA or TENA.  On the contrary, they 

are instead intended to complement and facilitate the use of 
such interoperability standards in an independent way – 
even allowing different interoperability exchange standards 
to co-exist – if that is what is necessary.    

6.3 Common Use of Object Model Interfaces 

Interoperability standards such as DIS, HLA and TENA, 
while serving different domains, share some interesting 
characteristics.  Principally the use of Object Models is 
shared by the HLA and TENA communities.  Object mod-
els offer semantic interoperability, and BOMs provide a 
common object modeling mechanism that can be used 
across different interoperability architectures. [10] 
 The piece part / building block concept provided by 
the BOM standard offers the type of modularity that is 
needed for representing C2 system and simulation object 
models and facilitating interoperability of C2 system and 
simulations – regardless of what exchange standards are 
applied (e.g., DIS, HLA and TENA).   
 A key word to be emphasized is the word “Base” in 
Base Object Model.  A BOM serves as a “Base” in several 
ways:   

1. It serves as an interface for “Base-level” compo-
nents that can be constituted with other base-level 
components. BOMs offer foundational pieces that 
can be leveraged as a basis for object modeling.  
Like selecting components off a palette, BOMs 
can be selected to construct object models of si-
mulations and federations. Thus the idea of a 
building block.  In this way it offers a flexible 
component approach. 

2. It also offers the “basic” elements needed for ob-
ject modeling. In a very simple way object classes 
can be defined with their supporting attributes.  
Not required for these classes are the things that 
are implementation specific such as dimensions 
and routing spaces, which is used for HLA but 
may be meaningless for other interoperability ar-
chitectures that could be employed.  This aspect is 
very important from the perspective of Syntactic 
Interoperability, and this will be explored later.  

3. Close examination of Figure 5 reveals a weapons 
effect pattern that can be captured as a BOM .  In 
this pattern example one entity fires a munition on 
a target.  The munition detonates, and an update 
regarding the damage state of the target is re-
flected.  This is a commonly anticipated behavior 
for most theater warfare exercises.  We expect to 
shoot at things – and this is how we typically do 
it.  Therefore “base” in this context refers to “fun-
damental patterns of interplay.”   Such patterns 
provide the basis for fulfilling the overall objec-
tives.  The aggregate of these objectives, is what 
is seen on the right hand side of Figure 11.  Each 
BOM provides a “basis” of understanding at the 
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conceptual model level, describing the fundamen-
tal behaviors and models that we can compose in-
to providing a much richer model set.   

6.4 Supporting Different Interoperability 
Architectures 

As BOMs are stitched together it results in something 
called a BOM Assembly.  The combination of BOMs 
spanning both conceptual model and the structural ele-
ments offered by object model needed of a C2 system or 
simulation can be selected, connected, and coupled to-
gether to formulate a BOM Assembly.  Through the use of 
some transformations that assembly can be used to repre-
sent the exchange document for a specific interoperability 
architectures such as an HLA Object Model or a TENA 
LROM as illustrated in Figure 11. 
 
 The benefit of this type of mapping using BOMs was 
shared by Cutts and Gustavson at the I/ITSEC 2006 con-
ference in Orlando, Florida:  
 

“the abstract things described in a Conceptual Mod-
el (entities and events) can be mapped to the actual 
types of things we are modeling, which are described 
in the Object Model Definition of a BOM.  So, if I 
identify that there is a firing entity at the conceptual 
level (in the conceptual model), my mapping tells me 
what system architecture classes [HLA, TENA, Navy 
OA or otherwise] can fulfill the entities and events 
associated to it.” [10] 

 
In this way, the mapping aspect of a BOM provides a 

powerful construct for representing composable bridges, 
because it spans the conceptual space with the implementa-
tion space.  

 

7 GUIDANCE  

So how does one begin to build and use highly reusable as-
sets that help bridge the conceptual space with the imple-
mentation space?  Again it all starts with the conceptual 
model, which needs to be carried forward into the other 
products that are built..  And conceptual models describing 
C2 system and simulation components need to be properly 
described with metadata, and mapped so that appropriate 
building blocks and supporting C2 system and simulation 
components can be identified and used.  This is best ac-
complished with iterative / incremental approach.  Also 
known as a spiral model.   
 And as patterns are being discovered and described 
“Consider what should be variable in your design” and 
“encapsulate the concept that varies” within the pattern.   
[11- p. 29].  This abstraction effort is what allows greater 
reuse and value. 
 Many developers and engineers learn the power of 
class inheritance, and some begin to over use and abuse 
this extensible methodology supported by object oriented 
languages.  However, in regards to reuse, inheritance can 
be a highly limited aspect.  What is recommended instead 
are for engineers to “favor object composition over class 
inheritance” especially in respect to conceptual modeling 
[11 - p. 20].  It is far more effective in regards to reuse to 
define a class that “has a” an attribute of another class than 
to define a class that “is a” an extension of another class.  
The “is a” relationship provides a hard dependency and 
binding on another class which can limit the class in being 
affectively used by others.  Whereas, the “has a” relation-
ship allows a class to couple it self with other classes in a 
very loose and flexible way. The attributes of that class 
which associate to another class, can adapt to other classes 
being used with out affecting the class for which the attrib-
ute is associated to.    
 Within a BOM such classes are defined at the concep-
tual model as entities.  And attributes are defined as char-
acteristics.  Furthermore, a BOM does permit inheritance at 
the Conceptual Model Definition layer.  It does, however 
allow for inheritance of classes that are being defined 
within the Object Model interface layer, which may yield 
opportunities for appropriate use of inheritance.  But at the 
conceptual model definition layer, it is neither recom-
mended nor feasible. 
 Another very important aspect is that these compos-
able bridges that are build and use (e.g, a BOMs) should 
always be designed to an interface rather an implementa-
tion.   [11 - p 18].  It’s important to ensure separation of 
interface from the implementation.     Having the ability to 
have combosable bridges (e.g. BOMs) that characterize 
capability without regard to platform and language, and an 
available set of C2 system and simulation components that 
adhere to those BOMs and fulfill the capability for my 
platform and language of choice is desirable.   It provides 
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the fuel needed to bring conceptual ideas to life, and in a 
composable way. 

8 SUMMARY 
 

In this paper we address interoperability as it to pertains to 
C2 systems and simulations. We explored how such inter-
operability can be addressed through "composability", and 
suggest that composability can best be understood and car-
ried forward through the use of  "bridges" that “span and 
provide a way to connect an idea (i.e., concept) to some-
thing implementable.”   
 We have identified that such bridges can be and 
should be represented and supported by well-defined con-
ceptual models, providing an effective way to communi-
cate among stakeholders. 
 We state that C2 systems and simulations can share 
the same (or very similar) conceptual models.  That, be-
cause a conceptual model is implementation neutral, capa-
bilities can be described independent of whether those ca-
pabilities are realized as system component or simulation 
component.  
 We also recognize that C2 systems including applica-
tions and web services may embed simulations to support 
its objectives.  Such C2 system/applications/web services 
will need to leverage simulations and "compose" services 
for specific C2/Simulation needs such as training.   Thus, 
the need for composable bridges supported through well-
defined conceptual models can be of great assistance here 
too.  
 We suggested that composable bridges, like a blue-
print, need to be reflected structurally as a means to com-
municate a concept for all stakeholders.  We suggested that 
such bridges could be built for reuse describing common 
patterns, which can then be mapped to one or more poten-
tial implementations.  We then explored the aspects of 
building composable bridges, which link the conceptual 
space and the implementation space.  The goal of such 
bridges is to help bring to life satisfying interoperable C2 
systems and simulations quickly and easily. 

As an analogy we explored the art of composing 
Lego® creations in how it relates with our desires within 
the C2 and simulation interoperability.   We have stated 
that the difference between building a Lego® creations and 
an C2 and M&S creations is the complexity of what is in-
tended, and have recognized that the clarity provided by a 
conceptual model is what helps bring a concept to imple-
mentation and then to a potential state of interoperability.  
We concluded that a conceptual model provides an effec-
tive bridge that could be easily reused to support multiple 
projects and interoperability efforts. 

As an enabling technology, we explored how the 
BOM, which is a recent SISO standard, offers a means to 
define and share composable bridges.  That it offers a 
component-based standard for reflecting conceptual mod-
els and linking such conceptual models to implementable 

interfaces. Interfaces that can be supported by a variety of 
architectures including various software languages (C++, 
Java) and interoperability standards (HLA, TENA, DIS).  

The BOM provides a reflection of that conceptual 
model, which can be used in several ways: 
(1) It helps identify a neutral way to characterize both C2 

capabilities and simulation capabilities. 
(2) Next, it can be used to help identify existing candidate 

C2 system and simulation components that support 
specific purposes such as training and testing.  

(3) If eligible C2 system and simulation candidates… 
a. cannot be found, then the BOM helps 

"bridge" over to designing the capability 
that's needed. 

b. can be found, then selections can made with 
"mappings" documented, which will allow 
for easier reuse / integration in the future. 

(4) Additionally, the use history experience can be high-
lighted back into the BOM (as metadata), making it 
even easier for sponsors, developers and engineers to 
select and choose viable C2 and Simulation compo-
nents in the future that they want to integrate into their 
environment. 
We recommend that a standard such as BOMs be used 

and applied as a common framework for defining and shar-
ing composable bridges, which facilitates communication 
among stakeholders and helps realize implementation 
needs for C2 systems and simulations. 
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2.Ensuring products meet certain 

– Requirements
– Commonality
– Reliability
– TCO
– Compatibility

what we create truly isn’t satisfying unless it has met our requirements

•Requirements
•Concept

•Product
•Creation
•Implementation
•Interoperability
•Something
meaningful

Images courtesy Nathan Sawaya

•Analysis / Design
•Component Selection / Use
•Construction / Development
•Test

Define
Objectives

1

Perform
Conceptual

Analysis

2

Design

3

Develop

4

Define
Objectives

1

Define
Objectives

1

Perform
Conceptual
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2

Perform
Conceptual

Analysis

2

Design

3

Design

3

Develop

4

Develop

4

Define
Objectives

1

Perform
Conceptual

Analysis

2

Design

3

Develop

4

Define
Objectives

1

Define
Objectives

1

Perform
Conceptual

Analysis

2

Perform
Conceptual

Analysis

2

Design

3

Design

3

Develop

4

Develop

4
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• “a structure spanning and 
providing passage over a 
gap or barrier.”

• “a transitional passage 
connecting two subjects or 
movements.”

• a means to span and 
provide a way to connect an 
idea (i.e., initial concept) to 
something implementable. 

bridges should be represented and supported by well-defined conceptual 
models, providing an effective way to communicate among stakeholders

bridge -

What we all want for any project is 
to be able to bridge quickly and 
easily from initial concept to 
implementation

Sponsors,
Architects Developers,

Artists, 
Builders

Developers,
Artists, 
Builders

•Requirements
•Concept

•Implementation
•C2 / Simulation 
Interoperability

•Analysis / Design
•Component Selection / Use
•Construction / Development
•Test
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conceptual models -
• A means to understand what is to be 

represented
• Provides a quick way to look at what that 

product might be like 
• Like a blueprint
• Implementation neutral

• C2 systems and simulations can share 
the same (or similar) conceptual models 

• C2 systems may embed (i.e. compose) 
simulations to support its objectives.  

– C2/Simulation used for training.
– Composable bridges supported through 

well-defined conceptual models can be of 
great assistance.

Conceptual Model - describes 
“what the [system or simulation] will 
represent, the assumptions limiting 
those representations, and other 
capabilities needed to satisfy the 
user’s requirements.”
- IEEE 1516.3 - FEDEP

composable bridges, like a blueprint, need to be reflected structurally as a 
means to communicate a concept for all stakeholders
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Bridges Built for Reuse –
Patterns
• What should we look for 

when trying to identify and 
define conceptual models?

• bridges can be built for reuse 
describing common patterns
– patterns can be mapped to 

one or more potential 
implementations

– The goal of such bridges is 
to help bring to life 
satisfying interoperable C2 
systems and simulations 
quickly and easily  

Pattern is “an idea that has been 
useful in one practical context 
and will probably be useful in 
others.”.”
- Martin Fowler

Pattern “… describes a problem 
which occurs over and over again 
in our environment, and then 
describes the core of the solution 
to that problem, in such a way 
that you can use this solution a 
million times over, without ever 
doing it the same way twice.”
- Christopher Alexander

“The best way to discover a pattern is to perform a conceptual analysis on 
the problem space.”
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Weapon’s Effect Pattern

Pattern of Interplay

pattern actions

Weapon Effects is 
a frequent 
“Pattern of 
Interplay”

“It’s often said that
patterns are 
discovered rather 
than invented”*

- Martin Fowler
*Fowler, M., Analysis Patterns – Reusable Object Models, 

Addison Wesley, 1997.
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Jamming / Detection Pattern

Jammer
(Originator)

Radar

Threat Detected in Range (Msg) 

Threat / 
Target

Emits 

Reflects

Detect

Jam

Detection

Jamming 

Pattern of Interplay

We could conceivably 
use the “Detection”
pattern for other 
purposes besides just 
“Jamming” such as 
“Vectoring 
Interceptors”

Here there are 
actually two 
patterns of 
interplay 

“It’s often said that
patterns are 
discovered rather 
than invented”*

- Martin Fowler
*Fowler, M., Analysis Patterns – Reusable Object Models, 

Addison Wesley, 1997.
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Bridges Built for Reuse –
Interfaces
• What should we look for 

when trying to identify and 
define conceptual models?

• We should identify mappable
interfaces

• interfaces identify 
– what will be provided 
– what should be supported 

by an implementation 
(hardware, software, or a 
system component)

“…it is essential for the software 
industry's health that key 
interfaces be well-specified and 
publicly available.” - Bjarne
Stroustrup

• Reflects a contract of what is 
available and accessible

Interfaces provide a framework to resulting implementations (i.e., 
software, simulation or system components) that support what’s 
described by a pattern

• Often described in terms of 
class structures
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Bridges Built for Reuse –
Interfaces to Components
• What should we look for when 

trying to identify and define 
conceptual models?

• Components provides a means 
to satisfy a composable bridge

• Look for available components 
that support the conceptual 
model.

• Examples
– Lego® Brick (simple)
– Electronic Chips
– Simulation Models
– Software Components
– System Components

Components - “Reusable building blocks which 
have a known set of inputs and provide expected 
output behavior, but the implementation details may 
be hidden.  Such components are useful for 
constructing simulations and/or providing 
functionality for simulation systems.” – COI M&S 
Metadata Focus Group

A component provides a means to satisfy a composable bridge
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Bridges Built for Reuse –
Discovery Metadata
• What should we look for when 

trying to identify and define 
conceptual models?

• Need to ensure the discovery of 
useful components, interfaces 
and patterns

• Discovery metadata provides 
way to catalog / tag reusable 
assets

• Helps optimize composability 
and reuse

Metadata is “structured, encoded data that 
de-scribe characteristics of information-
bearing entities to aid in the identification, 
discovery, assessment, and management of 
the described entities [2].”

We want and need to use metadata to catalog patterns, interfaces and components.
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Enabling Technology Standard for Composable Bridges

Conceptual
Space

Implementation
Space

Patterns

Ma
pp

in
g

Metadata

Interfaces

COMPOSABLE
BRIDGES

Components

Components

Components

Patterns

Ma
pp

in
g

Metadata

Interfaces

COMPOSABLE
BRIDGES

Components

Components

Components

Interoperability
Space

Simulations / 
C2 System
Applications

C2 / Sim
Interoperability

RequirementsWhat common 
structure allows us 
to represent 
composable bridges 
for supporting C2 
system and 
simulation 
interoperability?



15Building Composable Bridges

Patterns

M
ap

pi
ng

Metadata

Interfaces

Model Identification

Notes

Lexicon (definitions)

Object Model Definition

Object Classes

Interaction Classes

Data Types

Conceptual Model

Pattern Of Interplay

State Machine

Entity Type

Event Type

Model Mapping
Entity Type Mapping

Event Type Mapping

Enabling Technology Standard for Composable Bridges

Desired Characteristics:

– Identifies and names 
the common problems 
in a field of interest, 

– Describes the key 
characteristics of 
effective solutions for 
meeting some stated 
goal, 

– Helps the designer 
move from problem to 
problem in a logical 
way, and 

– Allows for many 
different paths through 
the design process.

- Based on ideas from Christopher 
Alexander

Desired Characteristics:

– Identifies and names 
the common problems 
in a field of interest, 

– Describes the key 
characteristics of 
effective solutions for 
meeting some stated 
goal, 

– Helps the designer 
move from problem to 
problem in a logical 
way, and 

– Allows for many 
different paths through 
the design process.

- Based on ideas from Christopher 
Alexander

BOM
Base Object Model

Patterns

Ma
pp

in
g

Metadata

Interfaces

COMPOSABLE
BRIDGES

BOM is “a piece part of a 
conceptual model, 
simulation object model, or 
federation object model, 
which can be used as a 
building block in the 
development and/or 
extension of a simulation or 
federation.”[3] 
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System ComposabilityModel Composability

Using the BOM as a Bridge to Achieve 
Interoperability

Reusable Piece Parts

65431

Perform 
Conceptual 

Analysis

2

Analyze Data 
and Evaluate 

Results

7

Define 
Objectives

Design Develop Plan,
Integrate, 
and Test 

Federation

Execute 
Federation 
& Prepare 
Outputs

FEDEP

Conceptual
Space

Interoperable
Space

Implementation
Space

locate create compose

Plug & Play Systems

BOMs

integrate
compose
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Using the BOM as a Bridge to Achieve 
Interoperability

System Composability

Plug & Play Systems

Model Composability

Reusable Piece Parts

Conceptual
Space

Interoperable
Space

Implementation
Space

M1

M2

M3

Realizable Ideas
(conceptual models 
describing patterns, 
states, entities, events  
w/ well described
metadata)

Interfaces 
(implementatable
classes, 
aggregated software
components, 
object models)

Implementations
(software,

simulation, system
components)

Interfaces 
(exposed interfaces,
system APIs, 
object models)

Levels of 
Interoperability
(technical, syntactic, 
semantic, pragmatic, 
dynamic, conceptual)

I4

I1
I2
I3

I6 I5

Mappings InteroperateS2
S1

S3

Integration
(aggregate, 
system coupling,
assembly)

A1

BOMs Achieving Level 6 Conceptual Interoperability
• Ensures greater likelihood of success for 

other levels of interoperability.  
• Requires a “fully specified, but 

implementation independent model.”
– Paul Davis 

FEDEP

BOMs
• help to focus on: 

• what needs to be shared 
conceptually within an C2 / 
M&S environment, 

• how the intended “components”
are to perform pragmatically, 

• how qualifying interfaces are 
semantically defined, and 

• how such components are 
syntactically structured

• complements the use of other 
interoperability standards in an 
independent way 
(e.g., HLA / TENA)
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Using the BOM as a Bridge to Achieve 
Interoperability

• BOMs support stitching of
– Conceptual models, and the
– Structural elements offered by 

Object Models
• Results in

– Mappings
– BOM Assembly

• BOMs / BOM Assembly can 
represent different architecture 
implementations

• provides a powerful construct 
for building composable bridges 
and achieving interoperability

BOMs

BOM 1

BOM 2

BOM n

Conceptual Model
View

Object Model 
View

Weapons

Effe
ct

Detect / 

Jam

Radio

Comms

BOM z
Sup

plie
r

BOM b

BOM a

Platfo
rm

Human

BOM c

BOM d Radar

Munitio
n

BOM z
Sup

plie
r

BOM b

BOM a

Platfo
rm

Human

BOM c

BOM d Radar

Munitio
n

Communic

atio
ns

CAP

Support
Collis

ion

BOM
Assembly

Composite
Interface

Composition Representation

BaseEntity

Time

HLA
Object Model

NCW Federatio
n

TSPI

Platform

Weapon

TENA LROM

PhysicalEntity

“the abstract things described in a Conceptual Model (entities and events) can be mapped to 
the actual types of things we are modeling (representing), which are described in the Object 
Model Definition of a BOM.  So, if I identify that there is a firing entity at the conceptual level 
(in the conceptual model), my mapping tells me what system architecture classes [HLA, 
TENA, Navy OA or otherwise] can fulfill the entities and events associated to it.”
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Topics Covered
• Problem
• Back To Basics
• Need for Bridging

– Aspects of Composability
– Aspects of Process
– Aspects of Standards

• Definitions
– Bridge
– Conceptual models

• Bridges Built for Reuse
– Patterns
– Interfaces
– Components
– Discovery Metadata

• Enabling Technology Standard for Composable Bridges
• Using BOM as a Bridge to Achieve Interoperability
• Summary

Building Composable Bridges

BOM
Base Object Model

Building interoperable C2 systems and 
simulations is arduous

Composability – Common Desire / Need
Process – Requirements First!
Standards – Ensuring products meet 
Requirements and are compatible 

Patterns

Ma
pp

in
g

Metadata

Interfaces

COMPOSABLE
BRIDGES

BRIDGE - “spans / 
connects an idea (i.e., 
concept) to something 
implementable”

•Requirements
•Concept

•Implementation
•Interoperability

CONCEPTUAL MODEL –
A means to understand what 
is to be represented
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Summary
• Interoperability is best addressed 

through "composability" 
• Composability can be understood and 

carried forward through the use of  
"bridges“

• Bridges
– “span and provide a way to 

connect an idea (i.e., concept) to 
something implementable”

– should be represented and 
supported by well-defined 
conceptual models 

• Patterns, 
• Interfaces, 
• Metadata 

• BOM offers key standard for 
supporting composable bridges & 
achieving conceptual 
interoperability

BOM
• helps identify a neutral way to characterize 

C2 capabilities and simulation capabilities.
• facilitates communication among 

stakeholders 
• helps realize implementation / interoperability 

needs for C2 systems and simulations 

Conceptual
Space

Interoperable
Space

Implementation
Space

bridge

conceptual
interoperability

BOMs

The clarity provided by a conceptual model is what helps bring a concept 
to implementation to a potential state of interoperability.
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Discussion / Questions?

• Tools
• Shared Experiences
• More Info  

– www.boms.info
– www.sisostds.org

Contact info:
Paul Gustavson
pgustavson@simventions.com
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BOM Experiences
• To date BOMs developed for the Army, Navy, Air Force, Missile 

Defense Agency, and general simulation community
• Example: Real-time Platform Reference (RPR) BOMs - SISO
• Example: Airborne Electronic Attack (AEA) BOMs - JHU/APL

– BOMs developed from the collection of DoDAF views that were originally 
formulated by the JHU/APL architecture team.  

– BOMs have helped to solidify mission objectives and capabilities.  
– A mapping of the AEA conceptual space provided by such BOMs is being 

made using to the software constructs representing JHU/APL’s 
simulation environment.  

– Allows for effective communication and traceability in the composition of 
AEA models.

• Example: Mid-Range Ballistic Attack Munitions (MR-BAM) 
BOMs - Navy

– BOMs used to rapidly prototype and explore potential Mid-
Range Ballistic Attack Munitions (MR-BAM) concepts.   

– BOMs provided the framework for a resulting prototype 
software model and simulation developed and demonstrated 
within a very short period of time.

Si
m

ul
at

io
n

BOM
Assembly

BOM 1

BOM 3

BOM n

Composite
Interface

Composition

Sim / 
System A

Representation Fe
de

ra
tio

nFederate B

Federate X

Federate A

Ag
gr

eg
at

io
n

Model
#1

Model
#2

Model
#3

Model
#n

- or -

- or -
Theater W

arfa
re

Representatio
n

BOM 2

Weapons

Effe
ct

Radio

Comms

Repair

Resupply

Detect / 
Jam
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Levels of  Interoperability
• Level 6 – achieved when the anticipated capability that 

is to be provided by the models and simulations to be 
used are fully understood and agreed upon by all the 
stakeholders.  At this level of interoperability there is no 
ambiguity in what is expected to be shared. 

• Level 5 – achieved when systems are able to come “on-
line” and begin to exchange and reflect data with other 
systems.   Such systems are “able to comprehend the 
state changes that occur in the assumptions and 
constraints that each is making over time, and they are 
able to take advantage of those changes.”[7]

• Level 4 - achieved when the systems, simulations or 
applications involved in the exchange of data are aware 
of the specific methods and/or procedures that a calling 
system is requesting.

• Level 3 - achieved when a common reference model 
(i.e., definition set) is used to perpetuate the 
understanding of the level 2 data being shared.

• Level 2 - achieved using technology such as XML, 
which offers a means to define and use a common data 
structure among the systems established in a network. 

• Level 1 - requires an agreed upon communication 
technology infrastructure and protocols such as UDP or 
TCP/IP to support the handshaking among networked 
systems.  

Achieving Level 6 Conceptual Interoperability 
• Ensures greater likelihood of success for 

other levels of interoperability.  
• Requires a “fully specified, but 

implementation independent model.”
– Paul Davis 

BOMs
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Background - BOM Early Adopters

210+ users representing 18+ countries

& Others…
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Available Tool - BOMworks

• Create BOMs
• Edit BOMs

– Grid/XML/UML
– Cut/Copy/ 

Paste
• Validate BOMs
• Source Code 

Generation
• Import FOMs
• Built on Galileo 

Framework  -
extensible and 
customizable

Free 
download is 
available
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Model Identification (Metadata)

Object Model Interface

Object Classes

HLA Object Class Attributes

HLA Object Classes

Interaction Classes

HLA Interaction Class Parameters

HLA Interaction Classes

HLA Data Types

Conceptual Model Definition

Pattern of Interplay

State Machine

Entity Type

Event Type

Model Mapping

Entity Type Mapping

Event Type Mapping

CONCEPTUAL MODEL – Describes what is to be 
represented, the assumptions limiting those representations, 
and other capabilities needed to satisfy the user’s 
requirements.”

PATTERN OF INTERPLAY – a behavior pattern characterized 
by a sequence of pattern actions involving one or more 
conceptual entities

STATE MACHINE - A description of the various states or 
conditions of a conceptual entity, and how the pattern 
actions associated with one or more patterns of interplay may 
affect these conditions over the conceptual entity’s life.

CONCEPTUAL ENTITY - An abstract representation of a 
real world entity, phenomenon, process, or system. .

CONCEPTUAL EVENT - A representation of a transient 
action that occurs among conceptual entities that may affect 
the state of one or more of the conceptual entities.

PATTERN ACTION - A single step in a pattern of interplay. 
Can be supported by a defined event or by another BOM. 
May result in a state change of a conceptual entity.  

BOM Conceptual Model
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Key Concepts
• Composability – Ability to assemble things from components

“Modularity is necessary when dealing with 
complex systems, and some degree of 
composability is surely possible and 
desirable.”

- Paul Davis (RAND)

• Creating a simulation requires breaking the problem 
into parts that can be addressed separately

– To reduce the effects of interruption
– To permit specialization
– To facilitate computing alternative ways of handling a given 

component
– To maintain the software over time
– To reduce risk by relying upon previously proven 

components where possible
• Understanding complex systems requires 

decomposition. 
– No one can comprehend the whole’s details 

• Testing systems is simplified if done module by module 
then at the system level

• Controlling costs / economic incentives
– Costs are correlated with the amount of new code writing

• Maintaining and modifying is easier / safer
– Individual modules can be substantively modified or 

updated as software as necessary, without endangering 
the overall system.

UNDERSTANDING COMPOSABILITY
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